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1. Introduction

The profinite fundamental group of a topos was defined by Grothendieck and
used for algebraic geometry, [2], [4, pp. 285-290]. It resembles the fundamental
group of a topological space. For example, if the space X is well-connected (i.¢.,
nice enough to have a universal, simply connected covering). then Grothendieck’s
fundamental group for the topos of sheaves over X is the prafinite compietion of
the usual fundamental group of X. In this paper we define a new fundamental group
for a topos which is internal (as a pro-group) and which corresponds to the actual
fundamental group rather than the profinite completion. Its main features are:

(1) Our fundamental group is defined internally. It does not depend on choices
(such as the choice of a base point) and is even defined for topoi without points.
Similarly it is functorial with respect to all geometric morphisms between topoi, not
just ‘base-point preserving’ ones.

(2) It is not required that the topos be connected. The fundamental group
behaves differently on different components.

(3) The traditional fundamental group of a well-connected topological space can
be recovered from our definition applied to the topos of sheaves. Similarly if G is
a group, then G (regarded as a pro-group) is the fundamental group of the topos
of G-sets (i.e., sets on which G acts) [Grothendieck’s definition yields the profinite
completion from which G and the traditional fundamental group cannot be
recovered.]

(4) If we are considering a connected topos with a point, then our fundamental
group can be pulled back along the point to a pro-group in Sets. This pro-group has
a profinite completion which is isomorphic to the Grothendieck fundamental group.
There is an internal profinite completion which can be viewed as an internal point-
free version of the Grothendieck group. The use of pro-groups is analogous to the
internal Galois group which ic an internai pro-group (or pro-groupoid) rather than
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an internal group (see [7], [8]). The Galois groups are always profinite (i.e., equal
to their profinite completions).

(5) Our best results are for the profinite completion of the fundamental group.
For example, there is a profinite version of the Hurewicz theorem (see Theorem
3.9). Analogous questions for the pro-group remain open. A disappointment is the
inability so far to locate the universal cover where it ‘should be’ (in the topos of
n-actions where n is the fundamental group and covers, see [1]. The relationship
between that paper and this one also remains open.

1. The fundamental group as a pro-group
The fundamental grop of a topos seems to be a pro-group rather than a group.

Definitivn. Let Grp be the category of ordinary (i.e., set-based) groups. Then a
pro-group P in a topos « is a left exact (=finite liiait preserving) functor:

P:Grp— .

For example every internal group H in ¢ corresponds to a pro-group Hom(H, —)
but most pro-groups are not oi this form.

Definition. Let G be a group in Sets and let ¢ be a topos. By a generalized G-Torsor
I in < we mean an object 7 on which G acts (on the left) so that the map
GxT—-TxT [given by (g 1)—(gr,1)] is an isomorphism and so that T has clopen
extent (meaning that the image of 7 under T—1 is a complemented subobject of
1. T is a G-Toersor in the ordinary sense iff the extent of 7 is 1. If ¢ is connected,
then (aside from the trivial object, 0) all generalized G-Torsors are G-Torsors in the
usual sense.

Definition. Let ¢ be a topos. For each group G in Sets let n(G) be the colimit of
the diagram of generalized G-torsors and G-equivariant maps. (If this colimit does
not exist, then < does not have a fundamental group. If ¢ is a Grothendieck topos
the diagram is essentially small and the colimit does exist.) Note that 7(G) is defined
as a colimit of an externally defined diagram. The internal colimit would be trivial
since. locally, all Torsors lock alike. Some external aspect is needed in di fining 7
since it is supposed to measure how well local phenoinena can be patched together
to torm glebal phenomena.

We turther regard m as a functor as follows: If 1:: G—H is a group homomor-
phism and if 7 is a generalized G-Torsor, then «*(G)=HKX T (tensoring over G)
is a generalized H-Torsor. This enables us to map n(G) to n(H).

Notation. It -+ is a topos, then 7 or even n(+ ) will often be used to denote the
Sundamental group of . The simpler notation m will be used when the topos
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involved is understood. The distinction between 7(¢) (the fundamental group of &)
and n(G) (the value of the functor = at the group G) should always be clear from
the context.

Remark. The best way to understand this definition and see that it does the ‘right
thing’ is to consider some examples. These are presented at the end of this section
after first verifying that = is left exact and well-behaved with respect to geometric
morphisms.

Proposition 1.1. The functor r is left exact (and so is a pro-group).

Preof. That r is functorial and finite product preserving and preserves the terminal
object, 1, is all straightforward. It remains to show that n preserves equalizers. Let
u and v from G ‘o H be homomorphisms and let EC G be their equalizer. Let T
be a G-torsor and let H®, T and H®, T denote u*(T) and v*(T) respectively. Let

AHR®,TH®,T
be a global H-equivariant map. Define:
T,={teT|M1®,1)=1®, 1}

(Note that T; is actually defined in ¢ as an equalizer and the ‘set-theoretic’ nota-
tion is only suggestive.) It is clear that 7; is closed under the action of E. Moreover
if 2e G but g¢E, then g(T,) is disjoint from 7,. These facts show that T, is
(locally) either empty or an E-torsor. To show that T, is a generalized E-torsor, it
remains to prove that 7, has clopen extent. For each he H define:

T,={teT|AM1®,N=h®,1}.

Clearly T is the disjoint union of {7},} as h varies in H (recall that H is a group
in Sets). Let SC T be the union of {g(7})} for ge G. Since g(T)) is just T, for
h=u(g)v '(g) it follows that . is complemented. Moreover if p: T—1 is the unique
map to 1, then p(S)=p(T)) and S=p~'p(S). Since T has clopen extent, it readily
follows that p(S) is the clopen extent of 7;. So T is a generalized E-torsor and its
existence shows that 7(«¢) maps onto the equalizer of n{x) and n(v). That r preserves
monos is straightforward, which compietes the proof.

Proposition 1.2. Let ¢ and ./ be topoi and let r*: & — ./ be an inverse image
Sfunctor. Then the composition r*n{(*) is a pro-group in .#. There is an associated
natural transformation n(r*) from r*n(*) to n(.#} which is functorial in inte sense
that if s*: ./ = 4 is also an inverse image functor, then

n(s*)s*(m(r*)) = n(s*r*).

Proof. For each group G we have defined 7(< }(G) as a colimit of G-torsors. Since
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r* preserves G-torsors and preserves colimiis, there is an obvious map from
r*rn(< )G) intc n(.# XG). It is straightforward to verify the details that this is
natural and interacts properly with s*.

Remark. From the above result, n{&) varies covariantly with inverse image func-
tors, hence contravariantly with geometric morphisms and therefore contravariantly
with continuous maps in the case of spatial topoi. This may seem unexpected since
the topological fundamental group is covariant. However, if we recall that n(¢) is
a pro-group generalizing the functor Hom(m,(X), —) we see that group homomor-
phisms correspond to natural transformations in the opposite direction.

Example 1 (H-sets). Let H be a group and consider the topos of H-sets. It is con-
venient to think of an H-set as a set together with a right action by H while G-torsors
in H-sets will have a compatible /eft ~ction by G. We claim that the colimit of all
G-torsors in Hom(H, G) and so m(H-sets) i~ essentially H (or more preciseiy, the
pro-group Hom(H, —).) An element of the colimit is represented by a G-torsor T,
together with a point 7ye I,. This produces a map m.H—G defined so that
tyh = m(h)1,. Conversely, given m: H—G then G acquires a right H-action (via m)
and becomes a G-torsor (under left multiplication) with a distinguishec element (the
identity) which corresponds to m. From this #n(G) is readily spown to be
Hom(H, G). The H-action on n(G) can be shown to be by conjugation in the sense
that {mb)(x)=mhxh ).

Remark. If G is abelian, then m(G) is simply the sct ot al! equivaience classes of
G-torsors. This happens because in the colimit each G-torsor gets identified to a
point. However, it G is not abelian, then multiplication by g nced not be G-equi-
variant for every G-torsor. So the G-torsor T need not collapse into a single point.
In the above exampie, the G-torsor T is mapped in the colimit 7#(G) onto a G-
conjugacy class of maps from H to G. This topic is pursued further in the discussion
of the relation between the fundamental group and homology (see Theorem 3.9).

Example 2 (Universal Covers). Le¢t X be a connected topological space which is nice
enough to have a universal covering p: X*—X. Let m; be the deck translation
group which then acts transitively on each fibre p '(x) (by universality). Pick a
base point x¥ in X* and let x,=p(xg). Let T be any G-torsor sheaf over X and let
[, in T be a eiven point lying over x;, in X. By universality, tnere exists a map
@ . X*—T which sends xg to 1,. For each deck translation d in r, there is a unicue
g€ G such that ad(xg) = gt,. 1t follows that ad = ga (as they agree at x.¥). This sets
up a group homomorphism m: i =G where m(d) is that g for which ad =ga.
Each m:n, —C arises in this manner since from m we get a G-torsor GRX*. It
follows rhat cach stalk . 7 the sheaf #(G)Y is in one- ¢y corresponde ce with
Homi{~ , = o the pro-¢ up ris a furcis- which is . u!ly -epresenied by he
deck transiation group 7. The glohal rej.c 1 tatian 21 i, desenibed in the , »al
section of this paper {Example 4.1;.
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Exaniple 3 (Pro-graups in Sets). (a) Every group H defines a pro-group by the
representable functor Hom(H, -). Those pro-groups P : Grp— Sets which are proper
and limit-preserving (i.e., preserve all limits, not just the finite ones) are (to within
natural equivalence) precisely those of the form Hom(H, —), by Freyd’s theorem.
It can also be shown that H is deterrained within isomorphism by P.

(b) Every topological group A defines a pro-group Hom(H, —) where Hom{H, G)
is the set of continuous homomorphi<m (taking G to be discrete). Those proper
functors P: Grp—Sets which are not only left exact bat also preserve infinite inter-
sections (of subgroups) are precisely those respresentable as hom(H, —) for a localic
group H. [7 his result corrects a mistaker claim that topological groups sufficed.
The improvemeni was suggested by John Isbell, the proof (not included here) was
obtaine:d ‘n ijoin: work with David Joyce.]

(¢} It H is a topological group and {H;} is a filter of sub-groups, then the func-
tor P: Grp—Sets defined by:

PG)=Colim Hom(H,,G)

is left exact. Conversely cvery proper pro-group is represented by such a filter
(which is constructible from the canonical diagram). Non-proper pro-groups exist
(Isbell) and they can be visualized as above in terms of ‘big’ topological groups H
which exist ir a larger universe.

Remark. If I is a proper pro-group in Sets, then we can construct the topos Sets’
of sets on which 7" acts (see next section). The question of whether n(Sets” ) is I
remains open (an apparent counter-example found previously does not vrork). For
profinite groups I we do have m(3ets’ )==I and a generalization to </ (see
Section 3).

2. On pro-groups in a topos
This s :ction contains some technical points which will be used later.
l-actions

Let 77: Grp— ¢ be a pro-group which is prope: (as defined telow). Then if ¢ has
enough limits, we can define what it means for I” to act and we can construct the
topos ¢! of all I'actions and I'equivariant maps.

Definitior. By an action, (4,G), we mean a set A and a group G (in Sets) which
acts on 4. The pair (/m, s) is an action map from (4, G) to (B,H) if m: A~ B and
s:G—H is a tenction such that m(s’/ 7)) = h(ma) for all he H and all ae A. We
denote

Act = “ji cutcgory of acaei .
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Observe that if Grp is the category of groups in Sets, then there is an obvious
injection:

I:Grp—Act®® where I(G)=(0,G).

If I': Grp— ¢ is a pro-group and if I" ‘acts on W’, then conceptually there should
be a functor W from Act°? to ¢ which sends (A4, G) to the object of action maps
from (W, I') ‘0 (4, G). To make this precise, we need to take care of a cardinality
condition. Recall that the infinite cardinal m is regu‘ar if n;<m for all jeJ and
Card(J)<m imply ), n;<m. (All infinite, non-limit cardinals are regular.)

Definition. Let m be a regular infinite cardinal and let ¢ be a topos. Let m-Grp be
the category of all groups with cardinal less than m. We say that I': Grp— ¢ is
m-proper if I is the left Kan extension of its restriction to m-Grp.

Since left Kan extensions from m-Grp preserve left exactness, the category of
m-proper pro-groups is essentially the category of left exact functors from m-Grp.
(For ¢ =Sets, a pro-group I is proper iff it is m-proper for some regular m.)

Definition. Let < be a topos and let I” from m-Grp to ¢ be an m-proper pro-group
for m some regular cardinal. Assume that ¢ has limits of all diagrams of cardinal
2" whenever n<m. Let m-Act be the category of all actions (4, G) with Card A
and Card G less than m. Let (/m-Sets)C be the category of all sets A (of cardinal
less than m) such that G acts on A. The maps of (m-Sets)® are to be G-equivariant.
So if Card(G)<m, then

(m-Sets)® ¢ m-Act.

Note also that /: m-Grp—m-Act°P.
Define <! as the category of all functors:

W :(m-Act)°P - &

such that:
(1) Wi=TI (so W(0,G):==I(G) and similarly for maps).
(2) W is left exact.
(3) The restriction of W to (m-Sets®)°P preserves a/l limits, as a functor to ¢ NGy
(4) The morphisms of #7 are natural transformations over /.

Theorem 2.1. With the above assumptions, ¢’ is a topos.

Proof. We shall only show how to modify the lengthy argument given in the proof
of Theorem 1.1 of [8] so that it applies here. First W is determined by its values
W(G, G) for each G in m-Grp, where G acts on itself by left multiplication. This
follows from the canonical colimit construction given in [8], which gives us a limit
in (m-Sets%)°F. We can now apply the argument of [8], which placed the objects
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{W(G,G)} into a Wraith glueing construction, except for the technical point of
Lemma 4.1 of [8] which relied heavily on finiteness. However, this lemma could
have been proved more easily using an adjoint transpose (of { with respect to
h% hy). Then finiteness is not needed.

Remark. Theorem 2.1 extends to pro-categories. The proof of theorem 1.1 of [8],
as modified above, applies.

Notation. Let ¢ be a topos. Then Pro-Grp(¢ ) is the dual of the category of left
exact functors from Grp to ¢.

Products and coproducts

Let I':Grp—¢ and 4:Grp—¢ be in Pro-Grp(#). We define their coproduct
I' + A so that (I’ + 0){G) is I'(G) x A(G). This is easily seen to be their coproduct in
Pro-Grp(¢).

: he product of 7" and 4 in Pro-Grp(¢) is more difficult. If < =Sets and if I" and
A are representatle, this corresponds to defining Hom(/'xXA4,G) in terms of
Hon«( I, G) and Hom(4, G). It is the subset of Hom(/, G) x Hom(4, G) consisting
of pairs of maps whose ‘ranges commute’.

Definition. Let G be a group in Sets. We call (G|, G,) a commuting pair of
subgroups of G if G, C G, G,C G and every xe G, commutes with ye G,.
Let I" and 4 be in Pro-Grp(¢). We define their product, I"x 4, by

(I'xANG)= U{F{G,) xA(Gz)[(Gl,GZ) is a commuting pair}.

(We regard each 7'(G,) X A(G,) as a subobject of I'(G) X A4(G) and the union is a
union of subobjects. The obvious map (I"xXA)NG)—I(G)XxA(G) is a natural
transformation, corresponding to a map "+ 4—71" X4 in Pro-Grp(#).)

Proposition 2.2. "X A as defined above is a product in Pro-Grp(¢).

Proof. First, a direct proof shows that I'x 4 is a left exact functor. Next, we must
first define the projection maps p, :I'XA—TI and p,:I'xA—A. These are to be
natural transformations, with p(G):I(G)—=(I'XA4A)G) and py(G):A(G)~
(' x I'Y(G). Since (G, 1) is a commuting pair and since A(1)=1, as 4 is left exact,
the definition of p,(G) is cbvious. Similarly p,(G) is defined using the commuting
pair (1,G).

Let ¥ e Pro-Grp(¢) and maps a: ¥ —1I, b: ¥ —A be given. We must find an ap-
propriate map ¢: ¥ —~I'x A. Note that a(G) : I'(G)— ¥(G) and b(G) : A(G)— ¥Y(G)
and we must define ¢(G): (7 XA)(G)— Y(G). Clearly a(G)x b(G) defines a map
from ("X A)G) to (¥ x P)G). It suffices to compose this with the diagonal map
(P X YNG)— ¥(G). But if (G,,G,) is a commuting pair, then there is a group
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homomorphism m:G,Xx G,—~G given by group mulitiplication. Therefore ¥(m)

maps W(G,) X ¥(G,) to Y(G) (since V(G, X G,)=¥(G))x ¥(G,)) and the maps

¥(m) clearly patch together correctly to give us the desired diagonal map.
Similarly we can show that

c(G) A} ANG)—V(G)

is uniquely determined by the naturality of ¢ and the requirements that ¢p, =a and
cp,=b. It suffices to consider a commuting pair Gy, G, of subgroups of G and
examine the restriction of <¢(G) to I(G,)xA4(G;). Let H=G,;xG, and
H.,=G,;x{1} and H,={1})G,. Let m:H—G denote group multiplication, a
homomorphism as G,, G, commute. Let n;: H =G be the projection maps for
i=1,2. To show that ¢(G) restricted to I'(G,) X 4(G,) is uniquely determined it
suffices to show that c(H) restricted to I (H,) X A(H;) is uniquely determined and
apply the naturality of ¢ to the map m. For this it suffices to show that ¥(m;)c(H)
restricted to I'(H,) X A(H,) is determined for i=1,2 but this is straightforward.

3. The profinite and restricted fundamental groups

A topos / may fail to have a fundamental group because it lacks enough colimits,
such as the colimit of all G-torsors where G is a group of large cardinal. For such
topoi it might be best to restrict our definition to groups of cardinal less than m
where 1 is a regular cardinal. In particular we consider the restriction to finite
groups (other restrictions could presumably be treated similarly). This produces the
notion of the profinite fundamental group which (Theorem 3.7) internalizes
Grothendieck’s fundamental group and which has good properties (e.g., Theorem

3.3, Proposition 3.8, Theorem 3.9 below).

Definition. Recall that a profinite group in  is defined to be a left exact functor
from Fin Grp (finite groups) to .

Define 7. : Fin 3rp— ¢ as the restriction of n,. Then #. (or just 7A) is the Pro-
finite Fundamental Group of . Note that Propositions 1.1 and 1.2 also apply to 7.

Exampies. 7 is the profinite completion of n. So ftor H-sets, 7 is (the functor
represented by) the profinite completion of H. Similarly, for spatial tepoi, over
well-connected topological spaces, 7 is the profinite completion of the traditional
fundamental zroup.

Notation, We let Profin Grp(« ) be the category of profinite groups in ¢ (and the
dual of natural transformations). If ¢ has enough colimits, then Profin Grp(¢) can
be regarded as the full subcategory of Pro-Grp(«) comprised of those pro-groups
which are R,-proper (see previous section). The inclusion of Profin Grp(¢ ) in Pro-
Grp(- ) then has a left adjoint which assigns to each pro-group its profinite comple-
tion (which is simply its restriction to Fin Grp).
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For technical reasons we need the following definition.

Definition. Let I” be in Profin Grp(#), let G be a finite group in Sets, and let ge G
be given. The nullity of g is, conceptually, the set of all y e I'(G) for which g is not
in ‘the range of y’. We define:

Nr(@)=J{rK)|K<G and g¢K}.

Note that we regard I'(K) C I'(G) when K C G and Nj(g) is a union of subobjects
of I'(G). We let N(g) = Nj(g) when I is understood. Note that N(g) is geometrical-
ly defined despite the negation ‘g ¢ K’ since N(g) is a union of specified subobjects.

Notation. For each ge G let g: G —G represent the group homomorphism of con-
jugation by g.

Proposition 3.1. Let I and A be in Profin Grp(¢ ). Recall that (I x AXG) is defined
as a subobject of I'(G) X A(G). It can alternatively be defined by

(I'xA)G)= {(y,J)eF(G)’x‘A(G)Il"(g)(y)=y or e N,(g) for all ge G}.

Proof. Since G is finitc this is a proposed geometric description of (I' X ANG). If
¢ = Sets, then I and 4 can be regarded as ordinary profinite groups and y: I" =G,
0:A4—G as maps. The condition says that either gy(x)g~'=yp(x) for all xe " or g
is not in the range of d. So if g is in the range of &, then gy(x) = y(x)g for all xe I
Using the results of [11], this proves the result for a topos ¢ (with countable limits).

Remark. Let I” be an ordinary profinite group and let G be a finite group in Sets.
Let I'((7) be the set of continuous homomorphisms from /" to G. Then I acts on
I(G) by conjugation. [If xelI’ and y:I'=G let (xy)(»)=»(x"'yx).] Since
I'(G)€eSets” we can lift I' to I in Profin Grp(Sets’).

Proposition 3.2. Let I in Profin Grp(¢) be given. Then I" can be lifted to I in
Profin Grp(¢ ) by a geometric construction which extends the above definition of
I for ¢ =Sets. Ir U*: ¢T— ¢ js the ‘underlying object functor’ of the inverse
image functor defined in (8, Lemma 3.4], then U*I'=T.

I has a differert lifting to Profin Grp(¢ ') obtained by composing with the ‘con-
stant action’ func:or & — 4T, When there is no danger of confusion, we let I also
denote this profinite group in ¢ with trivial action.

Proof. Let I” be given and let G be a finite group. To show that /(G) lies in &r
we have to regard I'(G) as a left exact functor from the category of finite group
actions to ¢ (see [7]). If the finite group H acts on the finite set A, then I'(G)(A, H)
is, conceptually, the object of action maps from (A4, H) to (I'(G),I') where I'" acts
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on I'(G) by conjugation. These maps are envisioned as pairs (m.s) where
m: A—TI(G) and sel'(H) such that for xe /" and ae A we have

m(s(x)a) = x(ma) =g(ma)g~' where g=m(a)(x)"'.

Recall that : G —G is defined by g(j)=gfg"". 1n order for (m, s) to be a. action
map we must require that m(ha)=I'(g)m(a) whenever ae A and (g~", h) is in the
range of (ma,sj: I —G x H. Therefore, we define:

F(GYA, H)={(m,s)|m: A=T(G), se '(H) and for all ae A4, geG,
he H, m(ha)=I'g)ma or (ma,s)e N(g™ ", h)}.

Note thai (ma,s)e (G x H), cossentially because I is left exact and that
(¢ “MeGxH.

Since A, G and H are all finite, this definition is geometric, and, from .he above
discussion (G )(A, H) has the appropriate properties in the case ¢ = Sets.

Theorem 3.3. Let I" b2 in Profin Grp(¢). Then
Al y=g7(yxT.

(Note that T is defined above and that 7(<) in Profin Grp(+¢) is lifted ro
Profin Grp(+ ") bv using the trivial I'-action. The product of these profinite groups
in ' is defined above.)

Proof. We need to relate generalized torsors in ¢ to generalized torsors in <. For
convenicice we shall work with actual torsors, the extension to generalized torsors
being straightforward.

Suppose that T is a G-torsor in . If we want to define a ‘G-preserving [-action’
on T, then, conceptually, there should be a map g: T —=I(G) such that for re T we
have (1) : ' G sends xe I to the unique g in G for which xt=g 'r. As a conse-
quence o(gyr) would presumably be I'(g))a(t) (where I'(g,) is composition with
conjuzation by g,). To make this precise we need the following lemmas.

Lemma 3.4. Let " be a G-Torsor in < (where G is a finite group in Sets). Let I’
be in Profin Grp(:' } and let a: T —I{(G) be defined so that o(gt)=I(g)o(t). Then
(7.0) can be regurded, in a natural wav, as a G-Torsor in «'.

Proof. To place (T,0) in </ we must interpret (7, 0) as a left exact functor from
the category of finite group actions to < (see [8]). Suppose that the finite group H
acts on the finite set A. Then (7, a)(A, H) 1s, in concept, the object of action maps
from (4, H) to (7,1") where I'" ‘acts’ on 7T via g so that if ‘veI"’, then xt=g"¢
where ¢ = a(1)(x). Therefore, an action map should (presumably) consist of a func-
tion sn: A—T together with s: " — H such that for all x € I” we have m(s X @) = yma.

Imagine that g{ma)x=g '; then xma--egma. If, in addition, s(x)=h, then
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(2
=

m(s X a) = m(ha). So if (™', h) in G x H is in the range of (¢ma, s) from I" to G X H,
then m(ha) should be gma. To make this precise:

tn g { e Fisnptarial 1a a g (P w ol T
0§ 11, Ty 1S 1uncioridi, icit a PR |
ic all ctraiochtfarward mncot Af tha varifinatinne haing radiinihla +4 tha foca 6 Qateo
10 QLL SLIQISILIVLI WaAlU, 11IUDL UL LIV Yol livativlild UCLIHE TCUULIUIC LU LIC Ladle ¢ = o0,
ncino tha racnltc of 111
udllle LCilWw LWJIWIiILY V1 ll l]
Lemma 3.5. Conversely. every G-torsor T in &1 ic equi yalent to a Torsor of the
SRR2223&E s LU YITOTE Y, VST Y RIIUTOUT & sl o O YU FUILIEE LU U A UITOoUr Uy el
Jorm (T,0) as described above where T=U*(T). [Recall, from [8], that

Proof. U*(T) is defined as an equivalence class of pairs (g, x) where xe T(A4, H)
and a€ A, see [6]. Let [a, x] denote the equivalence class containing (a, x). G acts
on 7 so for each ge G there is a natural map, which shall also be denoted by g,
from T(A, H) to T(A, H). Then G also acts on U*(T) by sending [a, x] to [a, gx].
Since T is a G-Torsor, given any (a, x), the collection [a, gx] exhausts U*(T). So for
each he H there is a unique g€ G such that [ha, x] =[a, g~ 'x], this defines a func-
tion (not necessarily a homomorphism) f(a, x) : H = G. We define (q, x) to be regular
if f(a,x) is a group homomorphism. When (g, x) is regular we can determine a
member of I'(G) as follows: There is a projection p: T(A, H)—=T'(H), let s=p(x).
Then, if f=f(a, x), we have I'(f)(s) e ['(G). It remains to show that every member
of U*(T) can be represented by a regular (a, x) and that, for reguiar (a, x), the
element I'(f)(s) depends only on the equivalence class [a, x] and that this defines the
required map o: UXT)—~I(G).

It suffices to do ali of this, geometrically, in the case ¢ = Sets. Let I~ be a profinite

group in Sets and let T be a G-Torsor on which I~ acts, so that the G- action

()
[¢"]
~—
—-
(¢]
=
=
(o
()
—
o

Finally, suppose that (a;, x) is regular where x=(n,s) is an action map from
(A,H)to (T, I"). Then n: A—T, se '(H) and n(sya)=yna for all ac A, yel. Let
t = n(ay) and let f=f(ay, x). We claim that I'(f)(s) =a(f). Let H, be the image of I
under the map s: I" -»H. Let yeI" be given and let & =s(y). It suffices to show that
if yr=g't, then g=f(h). But n(hay)=n(syay)=yn(ap)=yt=g 't. Also n(na,) =
Sy 't so g=f(h).
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Proof Theorem 3.3(contd.). An ‘element’ of a G-Torsor (7, 0) in ¢/ consists of an
element te T together with an element g,e/(G). Since elements of G-Torsors
represent elements of #(G), we see that 7(¢7)(G) maps nicely to #(E)G) X T(G).
It remains to show that this sets up the required isomorphism and the verification
is straightforward.

Corollary 3.6. #(Sets' =T (also I'=n(Sets)), when I is a profinite group.

Theorem 2.7. Let ¢ be a connected Grothendieck topos and let p*: & —Sets be the
inverse image of any point of E. Let #i(«<):Fin Grp—¢ as above. Then p*#(&)
represents a profinite group in Sets which is equivalent to the Grothendieck fun-
damental group of (*, p*).

Prcof. Let < be the category of loqally constant finite objects of ¢ as in [4, pp.
285-290]. Then there is a profinite group I” in Sets for which ¢ is isomorphic to
(Fin Sets) in such a way that p* corresponds to U* the underlying finite set. For
each finite group G the G-torsors of < lie in #,; and so the diagram of G-torsors
in / is isomorphic 1o the diagram of G-torsors in Sets’. Since 7 is the colimit of
this diagram and since p* preserves the colimit we see that p*7(¢) = U*#(Sets’ ) =T
(in the sense that I is determined by the functor (I, —) which sends G to the set of
continuous homomorphisms from 7" to G).

Proposition 3.8. Ler < be a topos and let #t =7#(¢). Then & acts in a natural way
on every C-torsor (for each finite group G) so all G-torsors live in « .

Proof. Let T be a G-torsor. As shown in Lemmas 3.4 and 3.5, we need to find an
appropriate map o:T —#(G) to make T into a G-torsor in ¢%. But this is
immediate as 7(G) is the colimit of all G-torsors so there is a coprcojection map from
T 1o 7(G) which serves as g.

Remark. We know that #(Sets”) is I", a profinite group. As shown in Proposition
3.2, the composition U*I": Fin Grps—Sets is I” (that is, U*[(G) = Con Hom(I G)).
There is another important left exact functor, U,, from Sets’ to Sets where
L'y(4) = the I'-fixpoint class of 4. Then U, is the unique geometric functor from
Sets’ to Sets. (By contrast, U* is an inverse image functor.) The composition U, r
is then the ‘abelianization’ of I'. [Clearly U,I(G) ¢ U*I'(G). Every fe U*I(G) is
represented by f: " —G. Then f is a I-fixpoint iff flxyx ')=/(y) for all x,y in I"
iff f factors through Iy where [;=I'/N, where N is the closure of the commutator
subgroup of I'] In all the examples 1 know of, if ¢ is a topos over Sets, via

P« —Sets, then y«{()) is abelian. Perhaps there is a reason for it to be the ‘first
homology group’ of «.

Definition. Let ¢ be a connected topos over Sets with geometric functor
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Y. & —Sets. Let @ =7a(< ). Then y«7 is a profinite group in Sets (as composing with
v« still yields a left exact functor from Fin Grp). Let H,(¢) denote the actual pro-
finite group which represents y,# (so that y.#(G)=[H,{&), G] where the bracket
denotes the set of continuous homomorphisms). We shall refer to H,(4) as the
first profinite homology group of &. This is suggested by:

Theorem 3.9. Let ¢ be a connected topos over Sets. Then, using the above
notation.

(1) H(¢) is abelia...

(2) For G abelian, [H,(4), G) = H' (¢4, G) as would be predicted by the universal
coefficient theorem. (Here H'(¢, G) is defined as in [4].)

(3) If ¢ has a point and if R is the Crothendieck fundamental profinite group,
then H,(*) is the abelianization of #i, (the quotient of m, by the closure of its com-
mutator subgroup).

Proof. We need the following lemmas:

Lemma 3.10. Let T be ¢ G-torsor in ¢ connected topos E where G is a constant,
finite group. If T is the coproduct of nontrivial objects A and B, then both A and
B have global extent (meaning that A1 and B—1 are epi).

Proef. Let UC 1 and V C 1 be the extent of 4 and B respectively so that 4 = U and
B—V are epi. For each ge G let:

Ag={acA|gac A}.

Then the extent of {{Ag l ge G} is a complement for V so either V=1 (and U=1)
(in which case we are finished) or UN V=0 in which case U or V is 0, contradicting
that A, B are non-zero.

Lemma 3.11. Given the above hypotheses, we can write T as a coproduct of subsets,
T=A,+A,+ -+ A, where each A; is connected and of global exteni. Moreover,
this decomposition is essentially unique.

Proof. Any object T satisfying the last sentence of the above lemma and also
having ‘at most n elements’ (i.e., satisfies Vx,...,x,,, V(x;=x)) ] i<j})can be so
decomposed by induction on n.

Lemma 3.12. Given the above hvpotheses, there exists a subgroup Go,C G end a
connected Gy-torsor Ty for which T is equivalent to GR T (over Gy).

Proof. Let T=A,+ A, + -+ A,. Let Ty=A, and let G, be the set of all ge G for
which g{4,)=A,. (Note either g(4;)=A, or g(A,) misses 4;.)
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Proof of Theorem 3.9(contd.). (1) Recall that y, is the global section functor,
Hom(l, —). Let G be given. We must show that each member of H,(& )(G) arises
from H,(<)G,) where G, is an abelian subgroup of G. If ;& H,(4)G) then
s: 1= 7(G). For each G-torsor T let T* be the colimit of the external diagram con-
sisting of 7 an all G-automorphisms of 7. If {T;} ranges over a representative set
of G-torsors, then 7#(G) is the coproduct of T;*. Since ¢ is connected, Fi for which
s:1-»T*. [Let A,C1 be the truth of se T;*, then the A;’s cover 1 and are pairwise
disjoint, so each A4, is complemented, by U{Ajlj;ti}, etc.] By Lemma 1.15, s
factors throigh 1-#(G,) where Go€ G and s: 1T where T, is a connected
G,-torsor. ' Note that Tj* C #(G,) and T* maps onto T* C #(G) under 7(i) where
i:Gy,—C and the range of s is contained in T*.) Now let :7,—T, be
G,-equivariant. Then g € G, such that 6(r) = gt for all g, as T; is connected, and this
implies that g is in the center C, of G,. So if g¢ C,, then gs: 1= T is another sec-
tion, contradicting the connectedness of 7,. So C;=G, and G, is abelian, as
required.

(2) If G is abelian, then [4, p. 275], H'(¢. G) is defined as the set of equivalence
classes of G-torsors, but, in view of the above proof, this is y.7&(< )G), since the
G-automorphisms act transitively on T so T# =1, when G is abelian.

(3) In this case the locally constant finite objects of < can be embedded in Sets™
as in the proof of Theorem 3.7. Now the Remark following Proposition 3.8 applies.

4. Examples
4.1. Spatial "opoi with universal covers

Let X be a locally connected tcnological space, wiad let p: X*—.X be a universal
cover. (This means that if g: Y —X is any other cover and if xe X* veY are
chosen with p(x)=g(»), then there is a unique 8: X*—Y for which gf=p and
#(xy=1.) Let n, be the deck translation group of all isomorphisms r: X*— X * for
which pr=p. Clearly n, acts transitively on each staik of X*. We shall interpret =
as a pro-group in Shv(X') and show that it then corresponds to n(Shv X). We shali
construct a sheaf of groups, n, on X with each stalk isomorphic to m,. Define an
cquivalence relation £ on the sheaf X*x X* so that (x, v)C{(a,b) iff there exists
re m, with (x, v) = (ra,.rb). Let n be the sheaf (X*x X*)/E. Then r is a group under
the operation:

(>, yXa, b)=(rx,b) where remn, and ry=a.

It 1s readily shown that this operation respects E-equivalence and it is a group opera-
tion with identity {x, x) and with (x, ¥) '=(J, x). On each stalk it is clearly isomor-
phic to n, (by choosing a base point).

To show that m = n(Shv X)) let T be any G-torsor. Then T is a covering of X (for
it 7:U—T is a local section where U is connected and open, then the sections
{gr!¢e G} correspond precisely to the part of T that lies over U). Define a map

M:TxX*xX*—G (the product is taken over X)
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so that M(s, x, y) =g when 6 : X*—T is the map over X with (x)=¢ and geG is
determined by 6(y)=gt. It is easily checked that M(s, x, y)= M(t,rx, i'y) for re Mo,
so M is, in effect, a map from 7 to G”, in fact from T to Hom(zn, G). In this way
Hom(z, G) is readily shown to be tize colimit of all G-torsors so m = a(Shv X). [The
details are sketched. If @:7—G is given iocally, regard @ as a map X*x X*—~G
over some open UC X. We must construct a G-torsor T and find an element te T
over U for which a(x, y) = M(t, x, y). Choose xy€ U and xe p~'(x,) € X* and regard
@ as a group homomorphism @: 7y — G with &(r) = a(x,rx). Let T=G® X* (over
mp) and let = 1®x. Similarly if #,€ T and ¢, € T} produce locally equivalent maps
from n to G then we can represent 7; and 7, as the same quotient of X*.]

Remarks. (1) In the above case, n is actually an internal group in Shv(X). If
Yx: Shv(X)—Sets is the global section functor, then the pro-group y[Hom(n, G))
is an internal group in Sets, namely, by 3.9, the ‘abelianization’ of n,, or =,
modulo its commutator subgroup. To see this, let f: X*x X*—>G be a global
group homomorphism which preserves £. Suppose f(x,rx)=ge G, then f(y,rv)=g
for all y (as the set of all y with this property is clopen). So f gives rise to a function
J:m,—G where f(x, y)=J(s) when y=sx. Note that f(x,rx)= J(r) and f(sx, srx) =
Flsrs™') but f(x, rx) = f(sx, srx) as f respects E. So f(r)=f(srs™"). This shows that
[ is a group homomorphism and that

¥+« Hom(zn, G) = Hom(iry/[ny, y), G).

(2) The pro-group 7 in the above case is represented by an internal group which
has also been denoted by n, so 7(G)=Hom(r, G). This identification seems natural,
but might cause a problem because y.7 has two reasonable interpretations and
Y+ Hom(m, G) is not the same as Hom(y,m G). In fact, one is represented by
no/[my, mpl, the other by the center of n, (see Remark after 3.8).

4.2. The pro-covering

A pro-group in Shv(X) need not be represented by an internal group, but might
be represented by a topological group over X which may fail io a sheaf (c¢f. Example
6.5 of [7]). This is the case when X is connected and locally path connected, the
universal pro-covering X* of X is the inverse limit of all (pointed) connected cover-
ings of X (see [6] and [9]). In general, X* is a fibration over X but need not have
discrete fibres unless it is a cover. The consiruction of 4.1 can still be applied.
(Details from [6] and [9] are needed.)

4.3. Totally disconnected spaces

A totally disconnected space may have non-trivial torsors. For example, Heath’s
Vee Space has a 2 to 1 cover which is a non-trivial Z,-torsor - see [3], [5], and
[11]. The proof is by ‘categorical topology as practiced by Baire.”) Nonetheless,
every torsor of a basically disconnected space (a space with a clopen base) is trivial
over a clopen neighbourhood of any point. So 7# and n are trivial for such spaces,
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which includes the Heath Vee Space as it is easily shown to be basically
disconnected.

4.4. Missed loops, relative groups

The funcéamental group of a topos often fails to discern apparent ‘loops’ because
these loop: do not lead to torsors. These are connected, locally arc-connected
topological spaces with non-trivial fundamental group (in the traditional sense) but
which admit no non-trivial coverings, hence no non-trivial torsors (for ordinary
groups) (see [6], such spaces are of course not locally siinply connected, there is also
an example called Schanuel’s topos).

Similarly let C be the category with two objects 0 and 1 and maps m:0—1 and
n:—1 with nm=m and n’=1. Then the topos Fun(C,Sets) appears to have a
‘loop’ around 1, but because there are no non-trivial G-torsors, for any group G,
the fundamental groups are trivial. There are not even any torsors for internal
groups.

The topos Fun(C°P, Sets) also has no non-trivial G-torsors for constant groups
G, but does have non-trivial torsors for internal groups. Nonetheless both fun-
damental groups are trivial. The topoi Fun(C, Sets) and Fun(C°P?, Sets) are both
connected Grothendieck topoi with points. So the Grothendieck fundamental group
is defined. and must be trivial.

It might be possible to get at loops such as the ones above by defining the fun-
damental group of a topos ¢ relative to a topos .#. So if .# is Sets we get our fun-
damental group; if .» is the topos of finite sets, the profinite group results (and
analogously for restrictions to sets of cardinal below m).
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